
Efficient Intranode Communication in
GPU-Accelerated Systems

Feng Ji, Ashwin M. Aji, James Dinan, Darius Buntinas,

Pavan Balaji, Wu-chun Feng, Xiaosong Ma

Presented by: James Dinan

James Wallace Givens Postdoctoral Fellow

Argonne National Laboratory

Fields using GPU Accelerators at Argonne

2

Computed Tomography Micro-tomography

Cosmology

Bioengineering

Acknowledgement: Venkatram Vishwanath @ ANL

GPU-Based Supercomputers

3

GPU-Accelerated High Performance Computing

� GPUs are general purpose, highly

parallel processors

– High FLOPs/Watt and FLOPs/$

– Unit of execution Kernel

– Separate memory subsystem

– Prog. Models: CUDA, OpenCL, …

� Clusters with GPUs are becoming

common

– Multiple GPUs per node

– Nonuniform node architecture

– Node topology plays role in performance

� New programmability and performance

challenges for programming models and

runtime systems

4

Keeneland Node Architecture

Heterogeneity and Intra-node GPU-GPU Xfers

� CUDA provides GPU-GPU DMA using CUDA IPC

� Same I/O hub – DMA best

� Different I/O hubs – Shared memory best

– Mismatch between PCIe and QPI ordering semantics

5

GPU-GPU, Same I/O Hub GPU-GPU, Diff. I/O Hub

MPI-ACC: Programmability and Performance

� GPU Global memory

– Separate address space

– Manually managed

� Message Passing Interface

– Most popular parallel

programming model

– Host memory only

� Integrate accelerator

awareness with MPI

(ANL, NCSU, VT)

– Productivity and

performance benefits

6

MPI

rank 0

MPI

rank 1

MPI

rank 2

MPI

rank 3

NIC

Main memory

CPU

Global memory

Shared memory

Multiprocessor

GPU

PCIe, HT/QPI

Current MPI+GPU Programming

� MPI operates on data in host memory only

� Manual copy between host and GPU memory serializes PCIe, Interconnect

– Can do better than this, but will incur protocol overheads multiple times

� Productivity: Manual data movement

� Performance: Inefficient, unless large, non-portable investment in tuning

7

MPI-ACC Interface: Passing GPU Buffers to MPI

� Unified Virtual Address (UVA) space

– Allow device pointer in MPI routines directly

– Currently supported only by CUDA and newer NVIDIA GPUs

– Query cost is high and added to every operation (CPU-CPU)

� Explicit Interface – e.g. MPI_CUDA_Send(…), overloading

� MPI Datatypes – Compatible with MPI and many accelerator models

8

MPI

Datatype

MPI

Datatype

MPI-ACC Interface Cost (CPU-CPU)

CL_ContextCL_Context

CL_MemCL_Mem

CL_Device_IDCL_Device_ID

CL_Cmd_queueCL_Cmd_queue

Attributes

BUFTYPE=OCLBUFTYPE=OCL

MPI-ACC: Integrated, Optimized Data Movement

� Use MPI for all data movement

– Support multiple accelerators and prog. models (CUDA, OpenCL, …)

– Allow application to portably leverage system-specific optimizations

� Inter-node data movement [Aji HPCC’12]

– Pipelining: Fully utilize PCIe and network links

– GPU direct (CUDA): Multi-device pinning eliminates data copying

– Handle caching (OpenCL): Avoid expensive command queue creation

� Intra-node data movement

– Shared memory protocol [Ji ASHES’12]

• Sender and receiver drive independent DMA transfers

– Direct DMA protocol [Ji HPCC’12]

• GPU-GPU DMA transfer (CUDA IPC)

– Both protocols needed, PCIe limitations serialize DMA across I/O hubs

9

Integrated Support for User-Defined Datatypes

MPI_Send(buffer, datatype, count, to, …)
MPI_Recv(buffer, datatype, count, from, …)

� What if the datatype is noncontiguous?

� CUDA doesn’t support arbitrary noncontiguous transfers

� Pack data on the GPU [Jenkins ‘12]

– Flatten datatype tree representation

– Packing kernel that can saturate memory bus/banks

10

Intranode Communication in MPICH2 (Nemesis)

� Short Message Transport

– Shared message queue

– Large, persistent queue

– Single buffer transport

� Large Message Transport

– Point-to-point shared buffer

– Ring buffer allocated at first

connection

– Multi-buffered transport

11

Rank

0

Rank

1

Rank

2

Rank

3

Sh
a

re
d

 M
e

m
o

ry
Rank

0

Rank

1

Sh
a

re
d

 M
e

m
o

ry

Rank

2

Rank

3

Non-integrated Intranode Communication

� Communication without accelerator integration

– 2 PCIe data copies + 2 main memory copies

– Transfers are serialized

12

GPU

Host

Process 0 Process 1

Nemesis Shr.

Memory

Performance Potential: Intranode Bandwidth

� Bandwidth measurement when using manual data movement

� Theoretical node bandwidth: 6 GB/sec

– Achieved for host-host transfers

� Observed bandwidth: 1.6 – 2.8 GB/sec

– With one/two GPU buffers – one/two copies

13

Eliminating Extra Copies

� Integration allows direct transfer into shared memory buffer

� LMT: sender and receiver drive transfer concurrently

– Pipeline data transfer

– Full utilization of PCIe links

14

GPU

Host

Process 0 Process 1

Nemesis Shr.

Memory

Copying Data Between Host and Device

� Three choices for selecting the right copy operation:

1. UVA-Default: Use cudaMemcpy(…, cudaMemcpyDefault)
2. Query-and-copy: UVA query buffer type

• Dispatch memcpy or cudaMemcpy

3. Parameterized-copy: Pass parameter for each buffer

• Dispatch memcpy or cudaMemcpy

15

Host to Device Host to Host

Large Message Transport Protocol

� Shared buffer mapped between

pairs of communicating processes

– Enables pipelined transfer

– Sender and receiver drive DMA

concurrently

� Fixed-size ring Buffer

– Set of fixed-size partitions

– R - receiver’s pointer

– S - sender’s pointer

� Partition size

– Set to data length by Sender

– Set to zero by Receiver

16

R

S

Extending LMT Protocol to Accelerators

� Sender and receiver issue

asynchronous PCIe data transfers

– Add Ra and Sa pointers

– Mark section of R/S segment in

use by PCIe transfers

� Proactively generate PCIe data

transfers

– Move to the next partition

– Start new PCIe data copy

– Repeat until full or RB is empty

– Update R/S when checking PCIe

operations later

17

R

S

Ra

Sa

Experimental Evaluation

� Keeneland node architecture

– 2x Intel Xeon X5660 CPUs, 24 GB Memory, 3x Nvidia M2070 GPUs

1. Parameter optimization: shared ring buffer and message

queue

2. Communication benchmarking: OSU latency/bw

3. Stencil2D from SHOC benchmark suite

18

Eager Parameters: Message Queue Element Size
and Eager/LMT Threshold

� GPU-GPU transfer of varying size

– “Shared buf” is manual data transfer

� Large message queue can support more requests

� Eager up to 64 kB, LMT for +64 kB

– The same value as host-only

19

LMT Parameter: Shared Ring Buffer Unit Size

� Host-to-host

– Default buffer unit size 32 KB

� GPU involved

– Use 256 KB

– PCIe bandwidth favors larger

messages

� Parameter choice requires

knowledge of buffer locations on

sender and receiver

– Exchange information during

handshaking phase of LMT

protocol

20

Intranode bandwidth – two processes

Latency & Bandwidth Improvement

� Less impact on D2D case

– PCIe latency dominant

� Improvement: 6.7% (D2D), 15.7%

(H2D), 10.9% (D2H)

� Bandwidth discrepancy in

different PCIe bus directions

� Improvement: 56.5% (D2D),

48.7% (H2D), 27.9% (D2H)

� Nearly saturates peak (6

GB/sec) in D2H case

21

Application Performance: Stencil2D Kernel

� Nine-point stencil computation, SHOC benchmark suite

– Halo exchange with neighboring processes

– Benefit from latency improvement

– Relative fraction of communication time decreases with problem size

– Average execution time improvement of 4.3%

22

Conclusions

� Accelerators are ubiquitous, moving target

– Exciting new opportunities for systems researchers

– Requires evolution of HPC software stack

� Integrate accelerator-awareness with MPI

– Support multiple accelerators and programming models

– Goals are productivity and performance

� Optimized Intranode communication

– Eliminate extra main memory copies

– Pipeline data flow in ring buffer

– Optimize data copying

23

Questions?

24

Backup Slides

25

Host-side Memcpy Bandwidth

26

